

Roll No.

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)

UG - (Full Time) - END SEMESTER EXAMINATIONS, NOV / DEC 2024

BE – ELECTRONICS AND COMMUNICATION ENGINEERING

V Semester

EC5304 & SIGNALS AND SYSTEMS

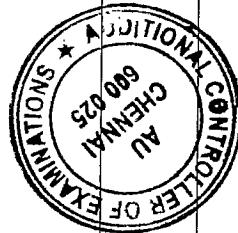
(Regulation 2019)

Time: 3hrs

Max. Marks: 100

CO 1	Ability to clarify signals and systems based on various characteristics and decomposition for easier analysis
CO 2	Ability to determine and analyze frequency components of signals and frequency response of the systems
CO 3	Ability to determine and analyze the capability and stability LTI systems for their impulse response
CO 4	Ability to convert the CT signals into DT signals and analyze, the effect of sampling and frequency content of DT signals
CO 5	Ability to analyze LTI systems and realize with various structures

BL – Bloom's Taxonomy Levels


(L1 - Remembering, L2 - Understanding, L3 - Applying, L4 - Analysing, L5 - Evaluating, L6 - Creating)

PART- A (10 x 2 = 20 Marks)
(Answer all Questions)

Q. No	Questions	Marks	CO	BL
1	Draw the time reversal signal $x(-t)$ for the following signal $x(t)$ as shown in Fig:1?	2	1	L3
	Fig:1			
2	Determine whether the corresponding system $y[n] = x[n-2] + x[n] + x[n+2]$ is time variant / invariant ?	2	1	L3
3	Find the Fourier series coefficients of the following signal $x(t)$? $x(t) = 5 + \sin(10 \frac{\pi}{7} t)$?	2	2	L4
4	Determine the Laplace transform of the signal $x(t) = \sin(\omega t)u(t)$?	2	2	L2
5	Find the transfer function of the system described by $3y(t) + 4 \frac{dy}{dt} = 2x(t)$?	2	3	L2
6	Give any two properties of convolution integral?	2	3	L1
7	Determine the Nyquist rate and sampling frequency of given signal $x(t) = \cos^2(200\pi t)$?	2	4	L3
8	Find the DTFT of the following discrete time signal: $x[n] = \delta[n-3] + \delta[n+3]$?	2	4	L4
9	Draw the basic building blocks representation of multiplier and adder for discrete time systems?	2	5	L1
10	Determine the system function $H(z)$ for the given difference equation $y[n] - 0.5 y[n-1] + 0.25 y[n-2] = x[n]$?	2	5	L3

PART- B (5 x 13 = 65 Marks)

Q. No	Questions	Marks	CO	BL
11 (a)	<p>The input signal $x(t)$ is for the given signal $x(t)$ in Fig:2.</p> <p>(i) Find the equation for the $x(t)$ and determine & sketch the $\frac{d^2x}{dt^2}$</p> <p>(ii) For the signal $x(t)$, sketch $x(t-4)$, $X(\frac{t}{1.5})$, $x(2t-4)$ and $x(2-t)$.</p> <p align="center">Fig:2</p>	13	1	L4
OR				
11 (b)	<p>Classify the systems S_1 and S_2 described by the input $x(t)$, $x[n]$ – output $y(t)$, $y[n]$; relations based on linearity, time invariance, static, causality, recursive, invertability and stability:</p> <p>(i) S_1: $y(t) = \sin(2t) x(t)$</p> <p>(ii) S_2: $y[n] = x[3n + 1]$</p>	7	1	L4
6				
12 (a)	<p>Find the Fourier series for the periodic triangular signal $x(t)$ illustrated in the following Fig:3, and sketch the amplitude and phase spectra for $x(t)$s?</p> <p align="center">Fig:3</p>	13	2	L2
OR				
12 (b)	<p>(i) Using the time-differentiation and time shifting properties, find the Fourier transform of the triangular pulse $\Delta(\frac{t}{T})$ as shown in Fig:4?</p> <p align="center">Fig:4</p> <p>(ii) Using the time shifting property, find the Laplace transform of $f(t) = (t-1) [u(t-1) - u(t-2)] + [u(t-2) - u(t-4)]$?</p>	7	2	L2
6				
13 (a)	<p>(i) Solve the second-order linear differential equation $\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y(t) = \frac{dx}{dt} + x(t)$. If the initial conditions are $y(0^-) = 2$, $\dot{y}(0^-) = 1$ and the input $x(t) = e^{-4t} u(t)$?</p>	7	3	L3

	(ii) Realize the transfer function $H(s) = \frac{4s+28}{s^2 + 6s + 25}$ by canonic direct (direct form II) and parallel form?	6		
OR				
13 (b)	Determine the convolution of the following signal $x(t) = e^{-3t} u(t)$ and $h(t) = u(t-1)$?	13	3	L3
14 (a)	Briefly explain about baseband sampling of Continuous Time signals with and without aliasing?	13	4	L2
OR				
14 (b)	(i) Determine and illustrate the Discrete Time Fourier Transform of the sequence $x[n] = \frac{1}{4} \operatorname{sinc}(\frac{1}{4} [n - 2])$?	7	4	L2
	(ii) Find the initial and final value theorem of z-transform for the given function $x(z) = \frac{1}{1+2z^{-1}-3z^{-2}}$?	6		
15 (a)	(i) Determine the transfer function and impulse response for the causal LTI system described by the difference equation $y[n] - 0.5 y[n - 1] = x[n] + 2x[n-1]$?	7	5	L4
	(ii) Check whether the corresponding LTI system with system function $H[z] = \frac{-1-0.4z^{-1}}{1-2.8z^{-1}+1.6z^{-2}}$ is stable and causal, if the ROC is $ z > 2$?	6		
OR				
15 (b)	(i) Find the inverse z-transform of the following function $H[z] = \frac{z(2z-1)}{(z-1)(z+0.5)}$	7	5	L4
	(ii) Calculate the convolution of two signal $x[n] = \{1, 2, 1, 2\}$ and $h[n] = \{1, 1, 1, 1\}$?	6		

PART- C (1 x 15 = 15 Marks)
(Q.No.16 is compulsory)

Q. No	Questions	Marks	CO	BL
16.	Find the response $y(t)$ of an LTI system with the transfer function $H(s) = \frac{1}{s+5}$ $R\{s\} > -5$, and the input $x(t) = e^{-t}u(t) + e^{-2t}u(-t)$.	15	3	L5

